Comment on 'A summation formula for Clausen's series ${ }_{3} F_{2}(1)$ with an application to Goursat's function ${ }_{2} F_{2}(x)^{\prime}$

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2008 J. Phys. A: Math. Theor. 41078001
(http://iopscience.iop.org/1751-8121/41/7/078001)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.153
The article was downloaded on 03/06/2010 at 07:28

Please note that terms and conditions apply.

COMMENT

Comment on 'A summation formula for Clausen's series ${ }_{3} F_{2}(1)$ with an application to Goursat's function ${ }_{2} F_{2}(x)$,

Yong Sup Kim ${ }^{1}$ and Arjun K Rathie ${ }^{2}$
${ }^{1}$ Department of Mathematics Education, Wonkwang University, Iksan 570-749, Korea
${ }^{2}$ Department of Mathematics, Govt Sujangarh College, Churu, Rajasthan, India
E-mail: yspkim@wonkwang.ac.kr and akrathie@rediffmail.com

Received 29 January 2007, in final form 26 October 2007
Published 5 February 2008
Online at stacks.iop.org/JPhysA/41/078001

Abstract

In a recent paper, Miller (2005 J. Phys. A: Math. Gen. 38 3541-5) obtained a new summation formula for the Clausen's series ${ }_{3} F_{2}(1)$. The aim of this comment is to point out that the summation formula obtained by Miller is not a new one.

PACS number: 02.30.Gp
Mathematics Subject Classification: 33C20, 33C50

Very recently, a new summation formula for the Clausen's series ${ }_{3} F_{2}(1)$ was reported to have been obtained in [2]. The author showed that for $\mathfrak{R}(b-a-f)>1$,
${ }_{3} F_{2}\left[\begin{array}{cccc}f, & a, & c+1 & ; 1 \\ & b, & c & \end{array}\right]=\frac{(c-a)(\alpha-f)}{c} \cdot \frac{\Gamma(b) \Gamma(b-a-f-1)}{\Gamma(b-a) \Gamma(b-f)}$,
where α is given by

$$
\begin{equation*}
\alpha=\frac{c(1+a-b)}{a-c} \tag{2}
\end{equation*}
$$

and in particular, for $f=-n$, the result

$$
{ }_{3} F_{2}\left[\begin{array}{llll}
-n, & a, & c+1 & ; 1 \tag{3}\\
& b, & c &
\end{array}\right]=\frac{(b-a-1)_{n}(f+1)_{n}}{(b)_{n}(f)_{n}}
$$

and claims that these results are new.
On going through the literature, we noted that the summation formula (1) obtained by Miller is not a new one. For this, if we consult the book by Prudnikov et al [4, equation (10), p 534], we get this result written in a slightly different form. Moreover, the result is a very special case of a formula due to Minton [3] which is also stated as (1.9.1) in the book by Gasper and Rahman [1]. We remark in passing that formula (2) can also be established with the help of the integral representation for ${ }_{3} F_{2}$ and the well-known Euler's transformation formula for ${ }_{2} F_{1}$.

Acknowledgments

The authors are grateful to the referees for their valuable comments. The work is supported by the research funds of Wonkwang University.

References

[1] Gasper G and Rahman M 2004 Basic Hypergeometric Series 2nd edn (Cambridge: Cambridge University Press)
[2] Miller A R 2005 J. Phys. A : Math. Gen. 38 3541-5
[3] Minton B M 1970 J. Math. phys. 11 1375-6
[4] Prudnikov A P, Brychkov Yu A and Marichev O I 1986 Integral and Series (New York: Gorden and Breach Science Publisher) (in Russian)

