

Home Search Collections Journals About Contact us My IOPscience

Comment on 'A summation formula for Clausen's series ${}_{3}F_{2}(1)$ with an application to Goursat's function ${}_{2}F_{2}(x)$ '

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2008 J. Phys. A: Math. Theor. 41 078001 (http://iopscience.iop.org/1751-8121/41/7/078001)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.153 The article was downloaded on 03/06/2010 at 07:28

Please note that terms and conditions apply.

J. Phys. A: Math. Theor. 41 (2008) 078001 (2pp)

doi:10.1088/1751-8113/41/7/078001

COMMENT

Comment on 'A summation formula for Clausen's series $_{3}F_{2}(1)$ with an application to Goursat's function $_{2}F_{2}(x)$ '

Yong Sup Kim¹ and Arjun K Rathie²

¹ Department of Mathematics Education, Wonkwang University, Iksan 570-749, Korea
² Department of Mathematics, Govt Sujangarh College, Churu, Rajasthan, India

E-mail: yspkim@wonkwang.ac.kr and akrathie@rediffmail.com

Received 29 January 2007, in final form 26 October 2007 Published 5 February 2008 Online at stacks.iop.org/JPhysA/41/078001

Abstract

In a recent paper, Miller (2005 *J. Phys. A: Math. Gen.* **38** 3541–5) obtained a new summation formula for the Clausen's series ${}_{3}F_{2}(1)$. The aim of this comment is to point out that the summation formula obtained by Miller is not a new one.

PACS number: 02.30.Gp Mathematics Subject Classification: 33C20, 33C50

Very recently, a new summation formula for the Clausen's series ${}_{3}F_{2}(1)$ was reported to have been obtained in [2]. The author showed that for $\Re(b - a - f) > 1$,

$${}_{3}F_{2}\begin{bmatrix}f, a, c+1\\b, c\end{bmatrix} = \frac{(c-a)(\alpha-f)}{c} \cdot \frac{\Gamma(b)\Gamma(b-a-f-1)}{\Gamma(b-a)\Gamma(b-f)},\tag{1}$$

where α is given by

$$\alpha = \frac{c(1+a-b)}{a-c} \tag{2}$$

and in particular, for f = -n, the result

$${}_{3}F_{2}\begin{bmatrix} -n, & a, & c+1 \\ & b, & c \end{bmatrix}; 1 = \frac{(b-a-1)_{n}(f+1)_{n}}{(b)_{n}(f)_{n}}$$
(3)

and claims that these results are new.

On going through the literature, we noted that the summation formula (1) obtained by Miller is not a new one. For this, if we consult the book by Prudnikov *et al* [4, equation (10), p 534], we get this result written in a slightly different form. Moreover, the result is a very special case of a formula due to Minton [3] which is also stated as (1.9.1) in the book by Gasper and Rahman [1]. We remark in passing that formula (2) can also be established with the help of the integral representation for ${}_{3}F_{2}$ and the well-known Euler's transformation formula for ${}_{2}F_{1}$.

1751-8113/08/078001+02\$30.00 © 2008 IOP Publishing Ltd Printed in the UK

Acknowledgments

The authors are grateful to the referees for their valuable comments. The work is supported by the research funds of Wonkwang University.

References

- [1] Gasper G and Rahman M 2004 Basic Hypergeometric Series 2nd edn (Cambridge: Cambridge University Press)
- [2] Miller A R 2005 J. Phys. A : Math. Gen. 38 3541-5
- [3] Minton B M 1970 J. Math. phys. 11 1375–6
- [4] Prudnikov A P, Brychkov Yu A and Marichev O I 1986 Integral and Series (New York: Gorden and Breach Science Publisher) (in Russian)